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ABSTRACT

Mining interesting patterns from transaction databasestteacted
a lot of research interest for more than a decade. Most oéthtosl-
ies usdrequencythe number of times a pattern appears in a trans-
action database, as the key measure for pattern interesting In
this paper, we introduce a new measure of pattern integgsss,
occupancy The measure of occupancy is motivated by some real-
world pattern recommendation applications which requiet ainy
interesting patternX should occupy a large portion of the trans-
actions it appears in. Namely, for any supporting traneactiof
patternX, the number of items inX should be close to the to-
tal number of items irt. In these pattern recommendation appli-
cations, patterns with higher occupancy may lead to higbealr
while patterns with higher frequency lead to higher precisiWith
the definition of occupancy we call a pattetominantif its occu-
pancy is above a user-specified threshold. Then, our tagkdsh-
tify the qualified patterns which are both frequent and dominant.
Additionally, we also formulate the problem wfining top4 quali-
fied patternsfinding the qualified patterns with the tépvalues of
any function (e.g. weighted sum of both occupancy and sippor
The challenge to these tasks is thatrt@notoner anti-monotone
property does not hold on occupancy. In other words, theevalu
of occupancy does not increase or decrease monotonicaliyn wh
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1. INTRODUCTION

Frequent pattern mining has been attracting abundantrodsea
interest for over a decade. Most of those studies ftesuency
namely the number of times a pattern appears in a transalztabase,
as the key measure for pattern interestingness. In this pape-
troduce a new measuregcupancywhich considers the degree that
a pattern occupies the items in its supporting transactiSpgcif-
ically, we prefer the pattern that occupies a large portibthe
transactions it appears in. This new measure of occupanmmgtis
vated by some real-world applications of pattern recomratod
and we describe two of the such applications below.

The first application is on print-area recommendation folbWe
pages. We often find that the printout generated by a Web leravs
print function is far from satisfactory since it usually taimms a
large portion of irrelevant content (e.g., havigation mexdvertise-
ments, and related links). To solve this problem, HP praa/&feart
Print! that contains a user-friendly interface so that a user can ea
ily select her interested print areas. Such selectionstaredsin

we add more items to a given itemset. Thus, we propose an algo-Print logs with user consent. If we view each content clipga s

rithm called DOFIA (DOminant and Frequent Itemset mining Al
gorithm), which explores the upper bound properties on panay
to reduce the search process. The tradeoff between bourideis
and computational complexity is also systematically asisied. Fi-
nally, we show the effectiveness of DOFIA in a real-world lagp
tion on print-area recommendation for Web pages, and alsode
strate the efficiency of DOFIA on several large synthetiadzts.

Categories and Subject Descriptors

H.2.8 [Database Managemerjt Database Applications-Bata Min-
ing
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lected content area) as an item and all the selected clipsusgra
on a given Web page as a transaction of items, the print log dat
from all users form a transaction database. Our task is tmec
mend an itemset (i.e., a set of content clips) in a given Wele pa
to users based on this database. Naturally, the itemsetcoenre
mend should occur frequently to reflect the interests of rassts.
Equally important is the completeness of the itemset: itikhoc-
cupy a large portion of the transactions it appears in so ttiet
user would not feel that the recommendation is missing toormu
relevant content.

Another motivating application is on investment portfotic-
ommendation. Assume that we have a transaction database tha
contains a large set digh-quality and diversifiethvestment port-
folios. Each transaction represents the set of financiatsgs.g.,
stocks, bonds,funds etc.) owned by an experienced inveGuor
goal is to mine the “interesting patterns" (i.e., high-dyahnd
diversified patterns) from the database to recommend to new i
vestors. Similarly, we prefer the investment patterns dpyiear
frequently in the database. More importantly, a good inmesit
portfolio usually works as an entirety to achieve investtriza-
ance and reduce risks. So we would expect that a good investme
pattern should cover a large portion of the transactions hichv
it appears. For example, we have two pattekhg” of equal fre-

1A Web browser extension, www.hp.com/go/smartprint



quency. IfX coversd0% assets of its supporting transactionswhile 2. PRELIMINARIES AND PROBLEM FOR-
Y only covers30%, it is natural to consideX as a much be_tt_er in- MULATION

vestment pattern. Thus, the occupancy of a pattern is vérgatr

to this application.

The commonality of the above two applications is that the set
of items in each transactioworks as an entirety for a tasénd
thus making occupancy as important a factor as frequenayetor
ommending interesting patlterns. I.n these applicatiorm,l.rnmj.cy 2.1 Definitions and Notations
becomes another pattern interestingness measure whichirs a
dispensable complement to frequency (or support): we densi
pattern interesting if it is not only frequent, but also ampbete as
possible in its supporting transactions. Intuitively, fupport of a
recommended pattern correlates to the recommendatioisiorec
while its occupancy is related to the recommendation recall

We show that the value of occupancy does not increase or de-
crease monotonically when we add more items to a given itemse
As a result, previous techniques for pruning the searchesfiac
frequent itemset mining based on the anti-monotonicityupf®rt
do not apply in our setting. We explore the properties fontpper
bounds of occupancy and quality (the weighted sum of sugpatt
occupancy) for various patterns and use the upper boundutepr ) - . . . :
the search process for high-efficient qualified pattern mginiThe an itemsetx vye identify all its supporting trgnsact‘lor&. For
contributions of our work can be summarized as follows: each transaction € 7x we calculate the ratio offl. We then

¢ We introduce a new interestingness measareupancyfor aggregate these ratios to compute a single value of occyanc
pattern mining prob'emsl It is an indispensable Complerment X.In th|S paper we fOCUS on the aVerage Of these I’atiOS me'ot
the widely-studied measure of support when the items inrstra  29gregate functions such@santileor minmay also be considered.

In this section we first give some preliminaries in patterning
and propose the definitions of occupancy. Then, we formulete
qualified pattern mining problems which consider both supaad
occupancy.

A transaction database is a set of transactions, whereteah
actionis a set of items. LeT be the complete set of distinct items
and7 be the complete set of transactions. Any non-empty set of
items is called aritemsetand any set of transactions is called a
transaction set The transactions that contain all the items in an
itemsetX are thesupporting transactionsf X, denoted agx.
The frequencyof an itemsetX (denoted agreq(X)) is the num-
ber of transactions iffx. The definitions of support and frequent
itemset are adopted from [1].

In the motivating applications in Section 1, the itemset mternd
to find should occupy a large portion of the transactions ifctvh
it appears. We can calculate the occupancy degree as follovs

action serve as a whole for certain tasks. We formulate thielgm The definition of occupancy is given as follows.
of mi_ning top+ qualified patterns which maximize any ir_mreasing Definition 1 (Occupancy): Formally, theoccupancyof an itemset
function of support and occupancy. In this study the weidsiem X is defined as
of support and occupancy is adopted as a show case.

e \We propose an algorithm called DOFIA (DOminant and Fre- H(X) = (wemge({@ teTx)),
guent Iltemset mining Algorithm) to solve the problem of dfiied It]
pattern mining. In DOFIA, we explore the properties on thpaip  whereaverage() is the average function of all the values in the
bound of occupancy for the patterns to prune the search ggdoe set. -
high-efficient pattern mining. Specifically, we propose twaper
bounds on occupancy for any given item3gtnd its supersets in Then, we can use two different average functidresmonic av-
the search tree. The first bound is computationally efficiehtle erageandarithmetic averaggein the above definition. Due to space
the second is proved to be the tightest bound with certaintiogn- limitations, we only consider the harmonic average in tripep,
straint. We also show techniques to achieve tradeoff betwhesse but similar techniques can also be employed when consmlarith-
two bounds. metic averagé.

e We demonstrate the importance of applying occupancy mea-
sure in pattern recommendation applications and the eféawss
of DOFIA through a real-world application of print-area oet-
mendation for Web pages using real data. We show the inttiosfluc ~~ 0ccupancyof an itemsetX is defined as
of occupancy results in significant improvement on the quaif IX]|
the recommendation and the high performance of DOFIA in find- ou(X) = HAU@Tage({W =1
teTx u

ing the top quallty patterns. - Itis clear that the occupancy of an itemséis the average ratio
» We systematically evaluate the efficiency of DOFIA on some st the occurrences of the items i to the number of the items

Definition 2 (Harmonic occupancy): The harmonic average of a

set of numbersA is H Average(A) = %. The harmonic

a

e Ty - I

large synthetic data sets. Specifically, we evaluate thagtnn the  in the transaction it appears in. The high value of the oceopa
efficiency of the algorithm by varying the transaction datsb(i.e., indicates that besides the itemsXnthere are only a small number
the number of transactions, the average length of tramsagtetc.), of items left inside the supporting transactionskafLet us take the
the parameter settings (i.e, 3, etc.), and the different strategies ~ transaction database in Tablgds an example. We calculate the
used in DOFIA. harmonic occupancy of the two itemsdts = {2,7, 14,20} and

I, = {2,7,14,15,20} as follows. The supporting transactions of

The rest of the paper is organized as follows. We first prethent I are?l?tg, L3, ta, 17 Ls, 1o} While the supporting transactions of

formulation of the problem in Section 2. In Section 3 we gike t Iy are{ty, s, t4}.
overview of the proposed algorithm DOFIA. The details of DOF Y Ax7
[ ou(h) = ~ 0.54
especially on how to calculate the upper bounds on occupamty 12+8+5+11+4x3
quality, are discussed in Section 4. We report the empistaly 53
to show the effectiveness and efficiency of DOFIA in Sectibns op(l2) = ———"—— ~0.48
and 6. We present the related works in Section 7 and conchale t > _ 1? +8+11 . _
paper in Section 8. The comparison on effectiveness between harmonic and- arith

metic average is out of the scope of this paper.

This is a real world example taken from the HP's print log
database.



Table 1: The transaction database of example 1
Trans No. | Length | Items

t1 12 124789101415162021
to 8 257912141520

t3 5 27131420

tq 11 1245781415182021
ts 6 237111421

te 12 125679121415171921
tr 4 271420

ts 4 271420

tg 4 271420

t1o 3 21420

One may think that the itemset containing more items leads to
bigger value of occupancy. However, it is not always truen-Co
sider itemsetd; andZ,. Even thoughly C I», we havepy (1) >
¢u(I2). The reason is thaf; only appears in large transactions
where it only occupies a small fraction, while appears in many
smaller transactions where it occupies a large fractiomsTbccu-
pancy does not always increase monotonically when we add mor
items to an itemset. Similarly, we can show that occupan®sdo
not always decrease monotonically when we add more items to a
itemset either. This non-monotonic property of occupargyni
contrast to that of support in frequent pattern mining.

Definition 3 (Dominant Itemset): For a given minimum occupancy
thresholds (0 < 8 < 1), X is said to bedominantif ¢(X) > S.m

With the definition of support and occupancy we can measure
the quality of an itemset by combining these two factors.

Definition 4 (Quality): The quality of an itemsetX is defined as
¢(X) = o(X) + Ap(X), whereo(-) denotes the (relative) sup-
port of a transaction, occupancy weight< A < +oco is a user
defined parameter to capture the relative importance of@stippd
occupancy. L]

Table 2: The transaction database of example 2

Trans No.| Items
t1 bc
to ab
t3 abc
ta abd
ts abcd

Top Qualified Pattern. The top qualified patterX is defined
as the qualified pattern with the maximal quality value:
(a(X) + Ad(X)) (€

arg max
X:o(X)za,p(X)28

Note that there may be multiple top qualified patterns if ¢here
ties in the maximum quality values.

There are three parameters in the definition of the top gedlifi
pattern, namelyy, 8, \. If there is no itemset that is both frequent
and dominant with respect tg (3, the top qualified pattern does not
exist and a valid algorithm will not output any result singenon-
empty pattern exists that meets the quality requiremertsarifeter
A, the occupancy weight, is a user defined parameter to capigire
relative importance of support and occupancy.

In the rest of the paper, we will primarily focus on mining top
(i.e.,k = 1) qualified pattern first. We then show that the solution
to top qualified pattern mining can be easily extended toestite
problem of mining topk qualified patterns fok > 1.

2.3 Discussion

One may think that dominant patterns with high occupancy usu
ally contain a large number of items and thus methods based on
Maximal Frequent Itemsehining may be adopted for finding top-
k qualified patterns. (An itemsét is a maximal frequent itemset
if X is frequent and no superset &f is frequent [6]). Given a
support threshold we can get multiple maximal frequent &ets,
among which we can select the one with the largest numbegrosit

Here we use the weighted sum of support and occupancy as theas the top qualified pattern. Is this a valid algorithm for imntop

quality. But it should be noted that any other functions hsas the
harmonic average (similar to the F1 score), the sum of |tyas
(similar to block size proposed in [8]) can be used to comltiee
two values of support and occupancy. Additionally, the pssad
algorithms in this paper are independent of this function.

Definition 5 (Qualified Itemset): For a given minimum support
thresholda and a minimum occupancy threshgdd0 < a, 8 <
1), X is said to begualifiedif o(X) > aand¢(X) > B. L]
2.2 Problem Formulation

Some pattern recommendation applications require thetdst-

qualified pattern? The answer is “no" for the following reaso

First, in methods based on mining maximal frequent itemsets
the number of items in a pattern is used as a measure in patern
lection. Compared with the concept of occupancy, this igalbt
theabsolutesize of an itemset while occupancy is ttedative size
of an itemset to the number of items in its supporting tratisas.
Thus, it is possible that the maximal frequent itemsetscsedeby
such methods have very low occupancy, even lower than the min
imal occupancy threshold, thus leading to a low recall ironec
mendation. For example, when= 0.3, I = {2,7,14,15,20}
is a maximal frequent itemset for the transaction databaSei
ble 1. However, its occupancy is much lower than its sulbset

ing patterns should be both frequent and dominant. On oné,han (9 7 14 20} as described earlier. Secondly, in mining top quali-
if a patternX is frequent it means that there are enough cases suchyjgq pattern a weighted sum of both support and occupancyets us

a pattern appears in the transaction database. Thus, ibwepthe
recommendation precision. On the other handy ils dominant it
indicates that the recommendationXfis complete enough. Thus,
it guarantees the recommendation recall. Therefore, \nitdefi-
nition of support and occupancy, we formulate the problemiof
ing qualified patterns as follows.

Mining Qualified Patterns. This task is to find all the quali-
fied patterns (which are both frequent and dominant) in ssai@n
tion database for the given support threshelédnd the occupancy
thresholds.

Additionally, among all the qualified patterns we also airfitid
the pattern with the maximal quality value for recommeratati
Formally, it can be formulated as follows.

as the interestingness measure, which may lead to bettemrec
mendation performance compared to the patterns selecteethy
ods based on maximal frequent itemsets. The experimersialtse
in Section 5 further validate our analysis here.

In the next section we will present our algorithm for the tolg
ified pattern mining problem.

3. OVERVIEW OF DOFIA

The straightforward solution to the pattern mining problam
to first generate all the frequent itemsets, calculate ticeancy
value for each frequent itemset, and then select the quhiiémset
with maximum quality value. In this section we will show how
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Figure 1. The lexicographic subset tree for the transaction
database in Table 2. The solid line shows the search space of
DOFIA, while the dashed line shows the search space for fre-
quent pattern mining. a« = 0.4, 3 = 0.3, A = 1.

the properties on occupancy and quality measures can lxddje
deeply into the search process and greatly prune the sgaach.s
Pattern mining algorithms usually adopt tlegicographic sub-

set treeto guide the search process. See Figure 1 as an example7

for four itemsa, b, ¢, d. The top element in the tree is the empty
set and each lower levékontains all thé-itemsets (itemsets with
exactly! items). Thel-itemsets are ordered lexicographically on
each level. Generating children in this manner enumeraiéisea
distinct itemsets to be considered without redundancyh@stare

4 items, there are in tot@* = 16 itemsets for consideration. Thus,
in the lexicographic subset tree there are 16 nodes, eachiohw
corresponds to an itemset.

Frequent pattern mining usually leveragesnianotonic decreas-
ing property of support values when adding more items to a given
itemset. That is, if an itemséX is not frequent then all the super-
sets of X are not frequent either. Thus, the traversal in the tree is
to find a cut (the dashed line in Figure 1) such that all the sode
(itemsets) above the cut are frequent, and all the nodesviibal®
line are infrequent.

In this section we will show how to explore the properties on o
cupancy and quality to further prune the search space iretirels
tree. Specifically, given the root of a subtree we can esértis
upper bounds of the occupancy and quality values for all tuea
in this subtree. In other words, the occupancy and qualitsnyf
node in the given subtree will be no bigger than its upper deun
respectively. If the upper bound on the occupancy is sméiken
the occupancy threshofg] this subtree should be pruned. Also, we
can maintain the current biggest quality value in the seprobess
so far, denoted by, and all subtrees with the upper bounds less
thang= should be pruned.

Take the subtree with the rogb} in Figure 1 as an example.
We can give an upper bound of the quality for all the nodes in
the subtree, includingb}, {bc}, {bd}, {bcd}. Assume we have al-
ready found{ac} is the node with the highest quality 1.467 so far,
which is bigger than the upper bound for the subtree rootééat
Thus, subtredb} can be pruned. The solid line (which is above
the dashed one) in Figure 1 is the cut line for pruning theckear
space for mining top qualified pattern. In this example, terech
space when using only the frequency constraint for prunasy12

as possible since the big quality value can be used to prume th
nodes whose quality upper bounds are less than it. On the othe
hand, we hope that the proposed upper bounds for occupadcy an
quality are as close as possible to the ground-truth vabresdiven
subtree, which also helps to prune the search space. Wedeonsi
two kinds of orders for the children of a node, i.e. the asoendnd
descending order of itemset support. Some experiments staiw
usually the ascending support order is more efficient tharother

one (at least on the transaction databases used in the epés).

It seems the “fail first principle” applies in this case. Thebysis

on this observation is omitted.

Algorithm 1: DOFIA_DFS
input : the current NodeurrentN ode, the top qualified pattern so
far best Node
1 if currentNode.quality > bestNode.quality then
2 |_ bestNode + currentNode;
3 for node € currentNode.children do
supp +— node.support;

5 occu <+ the occupancy bound on the subtree rooteddaate;

6 qual <+ the quality bound on the subtree rootedatle;
if (supp > a) A (occu > B) A (qual > bestNode.quality)
then

8 | DOFIA_DFSfuode, bestNode);

Algorithm 1 is the pattern mining process of a Depth-Fire&&h
(DFS) with the pruning techniques. Note that since each ioie
search tree uniquely corresponds to an itemset, we userns te
“node” and “itemset” interchangeably here. &trrentNode we
first compare its quality with the top qualified node found ap f
Then, we check any child, denoted byde, of currentNode.

If node is not frequent, or its occupancy upper bound is smaller
thang, or its quality upper bound is smaller than the current maxi-
mal quality value, themode is pruned. Otherwise, we recursively
checknode.

So far we have omitted the most challenging part in the algo-
rithm: how to compute the upper bounds on occupancy andtguali
Since the pruning of the search process is at the cost of dimgpu
these upper bounds, they should be computed efficiently. &/e d
scribe its details in the next section.

4. THE UPPER BOUNDS OF OCCUPANCY
AND QUALITY

In this section we will show how to efficiently compute the epp
bounds of the harmonic occupancy and its quality. First, We g
an overview of these upper bounds in Section 4.1.

4.1 Overview of the Upper Bounds

We give the notations which will be widely used in this study
as follows. For any subtree, 18 be the itemset for the subtree
root (the root itemset)y” be the itemset including all the new items
which will be extended in all the descendants of this subtiee
extension itemset). For example, for the subtree o= {b}
in Figure 1 there are two new itenasd which appear in the de-
scendants. Thug/ = {cd}. With the extension itemsét, we
can get the following two vectorEL (Extension Length vector)

nodes while the search space of DOFIA has only 5 nodes. Theand TL (Transaction Length vector) such thak(i) = |t; N Y|

search space is greatly reduced by pruning using the uppedso
for occupancy and quality.

In Figure 1 the children of a node in the subset tree are otdere
lexicographically on each level. It is worth mentioning tthiae
order of these children also affects the algorithm efficjeideally,
we prefer to visit the nodes with the bigger quality valuegady

andTL(z) = [t;|, wheret; is any transaction ifx. For exam-
ple, for the root sefX’ = {ab} with extension se¥” = {cd}, the
supporting transactions af&x = (t2, t3, ta,t5), and thusEL =
(tan Y|, [tsnY|, [tanY|,[ts NY]) = (0,1,1,2), andTL =
([t2], [ta], [tal], |ts]) = (2,3, 3,4). Furthermore, we will use to
denote the frequency of an itemd3ét in the subtree rooted &Y,



andwv to denote how many items are W aside from the items in

X, i.e.v = |W — X|. These notations are summarized in Table 3.
Furthermore, we will frequently need to s&itt, TL. For a vector

V (Vis EL or TL in our case)V' (V*) is the vector obtained by

sortingV in ascending (descending) order. Bb*(1) will be the

largest value irEL, and TL' (i) will be the i-th smallest value in

TL.

Table 3: Notations used by Section 3

X The itemset for the root of a subtree

Y The extension itemset for the corresponding subtree

w Any itemset in the subtre®&, X CW C (X UY)

u u often denote$Tyy |

v v often denote$W — X|

EL The Extension Length vectdEL (i) = |t; N'Y | wheret; € Tx

TL The Transaction Length vectdrl-(i) = |t;| wheret; € Tx
VT, V¥ | vectorV sorted by ascending/descending order

We aim to estimate the occupancy and quality upper bounds of

all the nodes in the subtree &f. In other words, the occupancy
(quality) of any node in the subtree &f will be less than this oc-
cupancy (quality) upper bound. The basic idea is briefly diesd
as follows.

First, we assume that we know the frequencyf any item-
setW C (X UY) in the subtree ofX. Then, we will propose
F(u,|X|, EL, TL) such that

(W) < F(u, | X],EL, TL), @)

It is worth mentioning that the computation & only involves
u, | X|, EL, TL. Using more detailed information ifix would surely
lead to better bounds, but it would also make the computatiore
costly. Also note that her&' is dependent om, the frequency of
w.

Then, we will showF'(u, | X|, EL, TL) is not increasing with the
increase ofi, namely

F(u+1,|X|,EL, TL) < F(u, |X|,EL,TL) ®3)

We call Equation 3 thanti-monotonicityproperty of the occupancy
upper bound with respect ta

Since it is required thall” be frequent, its frequency should
not be less than the minimum frequency threshptdg.,», the
minimal integer which is not smaller than- |7|. Thus, we have
the following theorem.

Theorem 1 (Occupancy Upper Bound): For any itemselV in the
subtree ofX

Proof: The conclusion holds if"(u, | X |, EL, TL) satisfies Inequal-
ities (2) and (3). [

Note that in Theorem 1 it is not required to know the frequeoicy
W. Thus, this is the occupancy upper bound of any node in the
subtree ofX. Next, for the upper bound of quality we also have

Theorem 2 (Quality Upper Bound): For any itemselV in the sub-
tree of X

u’ ,
W) < — + AF(u,|X]|,EL, TL 5
q(W) < fr-eqmiTgf'sz\(lTl (v, | X] ) (%)
Proof: For anyW in the subtree oX with the frequency,
u u
qW) == +¢(W) < —= + A\F(u,|X|,EL,TL), (6)
(W) = 77 +6(W) < 4+ AF(u, | X], ELTL)

Then, the conclusion holds #(u, | X|, EL, TL) satisfies Inequal-
ity (2). L]

Theorem 2 gives the quality upper bound of any node in the sub-
tree of X. It should be noted that the result is independent of the
function to combine support and occupancy. Any other flamsti
can be used here and the quality upper bounds can be computed i
similar ways.

In the following we will propose thd’ functions which satisfy
Inequalities (2) and (3) for the harmonic occupancy.
4.2 The Upper Bounds of the Harmonic Oc-

cupancy

For harmonic occupancy we will propose two instanced of
which satisfy Inequalities (2) and (3). We will show that fiirst
F is more efficient, however, less tight than the second one. We
also theoretically prove that the secoAdgives the tightest upper
bound if only the values ofX|, EL, TL are used for the compu-
tation. Finally, we show how to achieve the tradeoff betwten
bound tightness and computational efficiency.
4.2.1 The Efficient Upper Bourrdu, | X|,EL, TL)

We proposeF'(u, | X |, EL, TL) function as follows.
u|X| 4+ uELY (w)
T

Next, We propose Properties 1 and 2 to show thafttenction in
Equation (7) satisfies Inequalities (2) and (3).

F(u7 |X|7 EL, TL) = ) (7)

Property 1: For any itemse¥V in the subtree ofX, let u be the
frequency ofi¥’. Then, the occupancy ¥ satisfies that

¢H(W) < F(u7 |X|7 EL, TL) (8)
Proof: Let's consider the harmonic occupancyldf.
u|W|
op(W) =" C)
a(W) S e, 1
u| X| 4+ u|W — X|
_— (10
2iery It
1
< u|X| + vEL¥ (u) (11)
2iew It
y
< u|X| + vEL¥ (u) (12)
L T

Note that Inequality (11) is due to the fact that singe | = «,
there are at least transactions whose extension lengths are not
smaller thanflW — X|, and so|lWW — X| can be no larger than the

smallest of thesa lengths. [
Property 2: F(u+1,|X|,EL,TL) < F(u,|X|, EL, TL). .
Proof:
F(u+1,|X]|,EL,TL) (13)
_(w+DIX] + (u + 1)EL (u + 1) (14)
T TLG)
1 1
L @lX] +ELH () + (1X] +ELY(w)) as)
i TLN @) + T (w + 1)
U
u|X| + vEL¥ (u) (16)
S TL@)
=F(u, |X|,EL, TL) 17

Inequality (15) comes frorEL* (u+1) < EL*(u).Inequality (16)
comes from the property that for amy, a2 > 0 andbi,b2 > 0,

a a H L u
> $1+e2 |tis easy to check th “};:EBEZ.)D >
so Inequality (16) follows.

a1 az
by = by
IXI+ELY ()
TLT (ut1) ?

ay
:>bl



With Properties 1 and 2 we can also easily prove that the re- Y| > [W NY| = v. Combining these two factory,, .. [t| >

sults in Theorems 1 and 2 hold fét(u, | X|, EL, TL). Then, Al-
gorithm 2 gives the pseudo code for computing the qualityeapp
bound in Theorem 2 witt#” (w, | X |, EL, TL).

The complexity of Algorithm 2 i) (n + TL¥(1)). We first use
the time ofO(n + TL*(1)) for sortingEL, TL with counting sort
algorithm and therO(n) time for the loop in Line 5.

Note that if any other function is used in thaality definition to
combine support and occupancy we can substitute the equaitio
uw/|T| + A - occu in Line 9 with the used function to get the right
answer.

Algorithm  2:
F(u, |X|,EL, TL)

input : the root setX, the extension sét’, the corresponding two
vectorsEL, TL andn = |Tx|.
output: qual, the quality upper bound of any itemset in the subtree
rooted atX'.
sortEL by descending order;
sortTL by ascending order;
sum <+ 0;
qual + —oo;
for u < 1ton do
sum  sum + TL(u);
if u> freqm:n then
occu +— (u|X |+ u - EL(u))/sum;
L qual < max(qual,u/|T|+ X - occu);

The quality upper bound based on

© 00 ~NOUAWNRE

4.2.2 The “Tightest” Upper Boung’(u, v, | X|, EL, TL)

As mentioned beforeF'(u, | X|, EL, TL) has the parameter,
frequency for any itemsétl” in the subtree ofX. Using a new
parametew = [W NY| = |W — X|, i.e,, the number of items in
W aside from those itX’, we may obtain a stronger upper bound.

Property 3: Let
ulX|+u-v

minll,...’lu’EL(li)Zv Zl":l TLT(llz )
18

F'(u,v,|X],EL,TL) =

Then for any itemselV in the subtree ofX with |7w| = v and
[WNY|=wv, we havepg (W) < F'(u,v,|X],EL, TL).

Furthermore, for any items&t” in the subtree of with | Ty, | =
u (and no constraint oIV’ N Y'|), we have

épr(W')< max F'(u,v,|X|,EL,TL) (19)
0<v<EL (u)
2 F'(u,|X|,EL,TL) (20)

Proof: For any itemset as described in Property 3, we have

W)= =—— 21
A ST e
ulWnN(IZ-Y)|+uWnY]|
= 22

2reTyy It ®2
ulX| + uwv

= —_—— 23

e 1 @)

Note that7w are the supporting transactionsdf and | 7w | =
u. SinceX C W, by the anti-monotonicity of frequent item-
sets,7Tw C Tx. SincelW NY| = v, forany¢ € Tw, [t N

minll’... A EL(L)>v Z?:l TLT(ZZ) Thus,

u| X | 4+ uv u| X | 4+ uv
ou(w) = Sl o dXltw

Dieriy Il T ming, gy el ze Yoy TLT (L)
For any itemset$V’ in the subtree withTy,/| = wu, it must be

the case that < |W’' NY| < EL*(u). We unify the bounds
F’(u,v,|X|,EL, TL) overv and then have

pr(W') <  max F'(u,v,|X|,EL, TL)
0<v<ELl(u) m

Property 4: F'(u+1,|X|,EL,TL) < F'(u, | X|, EL, TL). Here,
the definition of F’(u, | X |, EL, TL) is given in Equation (20). =

Proof: By the definition of /' (u, v, |X]|, EL, TL), similar to the
proof of Inequality (16), we have

F'(u+1,v,|X|,EL, TL) < F’(u, v, |X|,EL, TL)

for anyu, v.
SinceELY (u + 1) < EL*(u), we have
F'(u+1,|X],EL, TL) (24)
= max F'(u+1,v,|X|,EL, TL) (25)
0<v<EL} (u+t1)
< max F’(u,v,|X]|,EL,TL) (26)
0<v<EL} (u+1)
< max  F'(u,v,|X],EL, TL) 27)
0<v<EL} (u)
:F’(u7 | X1, EL, TL) (28)
[

With Properties 3 and 4 we can also easily prove that Theotems
and 2 also hold foF” (u, | X|, EL, TL).

Remark 1: The Functions ofF" and F’ proposed in Property 1
and Property 3 can be both improved by a small techniqu.Af
Y| = |Y| for somet € Tx, thenY C ¢. Thus,t is a supporting
transaction for any¥’ in the subtree ofX. This observation can
further improve the two bounds above. We omit details bezitus
would make the formulae too complicated. [

Algorithm 3:  The quality upper bound based on

F'(u,v,|X]|,EL, TL)
input : the root setX, the extension sét’, the corresponding two

vectorskEL, TL andn = |Tx|.
output: qual, the quality upper bound of any itemset in the subtree

rooted atX.

1 sort(EL, TL) by ascending order &fL;

2 sum + 0;

3 qual + —o0;

4 for v < 0to ELJ'(freqmm) do

5 u <+ 0;

6 for i < 1tondo

7 if EL(z) > v then

8 u+—u+1;

9 sum < sum + TL(3);
10 if u> freqmin then
11 occu +— (u|X| 4+ u - v)/sum,;
12 qual + max(qual,u/|T| + X - occu);

Algorithm 3 shows the pseudo code for computing the quality
upper bound based df’ (u, v, | X|, EL, TL). The time complexity



Quality Upper Bound| Complexity 5. EVALUATION ON EFFECTIVENESS

F O(n + TL¢(1)) In this section we evaluate the effectiveness of occupanay i

I O(TLY(1) + n-ELY(1)) real-world application of print-area recommendation. ejeas-

~ T sume that we have the log database which records how previous

r O(L*(1) + mn) users clipped the Web pages from a Web site. Each transaction
Table 4: The complexity of different estimation methods of refers a set of content clips selected on a Web page. Giverba We
quality upper bound page from the same Web site, we aim to recommend the informa-
is O(n 4+ TLY(1) +n - ELY(freqmin)), in whichO(n + TL¥(1)) tive clips for this Web page. More specifically, [Etbe the com-
is for sorting the transactions (with counting sort alduri) and plete set of distinct clips in the database. For a given Weje pee
O(n - EL*(fregmin)) for the double loop in Line 4 and Line 6. can get a se) C 7 of clips which are included in this Web page

Also, we theoretically prove that’ is the tightest upper bound  (how to determing) is omitted). Thus, our task is to select a subset
if only the values of X |, EL andTL are used in the computation. ~ 0f @ for the clip recommendation. By mining top qualified itemset

Namely, we have the following theorem and its proof is orditte the recommended itemset is the afieC @ which has the maxi-

) ) mal quality value among the qualified itemsets (for a givarpsut
Theorem 3: F'(u, |X|,EL, TL) is the tightest upper bound for har-  tyresholdey and a occupancy threshal.

monic occupancy of any node in the subtreeofvith u supporting To show the effectiveness of the proposed method we manually
transactions if we only use the valueq &f|, EL, TL to compute the labeled the ground-truth of print-areas on the 2000 Webgfigen
bound. m the 100 major print-worthy Web sites (20 pages for each Wel. si
Corollary 1: max; <.<i7y| (1o + AF'(u, | X|,EL, TL)) is the We compare the proposed solution with the maximal frequent

itemset based method (introduced in Section 2.3). Spelgjfica
we can first generate all the maximal frequent itemsets armhgm
them select the one with the largest number of items for recem

tightest upper bound of the harmonic quality (harmonic pecicy
used inside) of any node in the subtreeofif we only use the

values of| X |, EL, TL to compute the bound. n dation
4.2.3 Tradeoff Between Bound Tightness and Com- For the 20 Web pages from a Web site, we use leave-one-out
putational Efficiency cross validation to evaluate the recommendation accuracywe

We have proposed two quality bounds based on harmonic oc- Iteratively select one page as query and the log data on thede
cupancy so far. Their complexity is summarized in Table3.2. Web pages are used to genere_lte the transaction database-for r
Although F” is provably tighter tharF", whenEL*(1) is large, it ommendation. A recommendation result actually refers teta®

can also take much more time th&hand possibly becomes the conte_nt clips on the give_n Web page. Thus, we can evaluate its
computing bottleneck. To alleviate this situation, we ms® a effectiveness by calculating the overlap area betweenebent-

new technique that achieves balance between the boundeight mended clips and the ground truth on the query page. Theh, wit
and computational efficiency. The basic idea is as follows. | theoverlap areawe can calculate the precisipmecall 2 and £'1

stead of enumerating every possible valueEefin the range of score of the recommendation in terms of area size. Spedgffical

[0, EL*( fregmin)], we split this large interval intex smaller inter- p_AGNARl o [AGOARI L, PxR @0

ValS[Uo,Ul—l],”' 7[Um*17vm_1] (UO =0,9m = ELi(fTequ”)+ 1Rl gl PR

1). Where Ag is the clipping region of ground truttd z is the cIiP-
For each intervalvy. 1, vx —1], using the assumption that_; < ping region of the recommendation result and. fdenotes he

|W — X| < v, we obtain a tighter bound on occupancy in Prop- region size. If the precision is less than 1, it means that eeslrio
erty 5. In the end, we unify then bounds and get a final re- remove some areas from the recommendation. If the recadbs |
sult. The time complexity for computing such a quality bousd ~ than 1, it indicates that we need to add some contents to getth
O(n+TL*(1) +mn). Using a proper value fon, we achieve the ~ act clipping areas. Then, we can average these these parfoem

tradeoff between the efficiency and effectiveness of thetiolihe values over the 2000 Web pages to get the average performance
complexity for these three methods are summarized in Table 4 The experiments in this section try to answer the followingst

) ) tions: (1) Does the concept of occupancy help to improve ¢ae r
Property 5: For any itemsetV" in the subtree ofY, letu be the ommendation performance compared with the baseline method
frequency oflV. Assumev; < [W — X| < vgi1, thenthe har- 5y How does the occupancy weightaffect the recommendation
monic occupancy oV satisfies that performance?

uX| 4+ umin(ELY (1), vgr1 — 1) The results of the baseline method are summarized in Table 5.

on(W) < — TE— (29) The results of DOFIA are show in Table 6. Each entry in Tables 5
M, ey B 20, 2imn TL (1) and 6 is the arithmetic average of the values (precisiorallrand
wheret;, is any supporting transaction &f. [ F'1) over the 2000 Web pages. Since ti¢ value is the harmonic
) ) ) average of precision and recall, the aver&gevalue over all those
The proof is omitted here. Then, we have the following thewre Web pages may be less than the average values of both precisio
Theorem 4: Letw’ = fregmin be the minimum frequency thresh- ~ and recall. For example, as shown in Table 6 whes 0 the av-
old. For any integer = vo < v1 < - -+ < vy = ELY (/) + 1, eragel'1 value is 79.79%, which is smaller than the corresponding
. A average values of precision and recall.
F(u,|X],EL, TL) = max F(u',vg, vg41,|X],EL, TL) Note that for the baseline method, the maxifialscore i€0.56%
oshsm (whena = 0.1), while DOFIA achieves a maximdi'l score of
is the upper bound on harmonic occupancy for any frequint 93.8% (when\ = 6.0). So the improvement on recommendation
the subtree ofX'. And accuracy is clear.
U The role of\ in DOFIA to this application is quite interesting.

max — + AF'(u, | X|,EL,TL
w <u<|Tx | |T| (w1 X )

is the upper bound on quality for any suidh. u

Intuitively, A represents the emphasis we put on occupancy. A
higher emphasis on occupancy is expected to lead to a bettst.r



Such is indeed the case—whgiincreases from.0 to arounds.0,
recommendation recall increases significantly for the rsodm-
terestingly, recommendation precision increases at thee $ame.
The main reason is that with the increase)othe quality value
(considering both support and occupancy) may lead to bptter
terns whose area intersection with the ground truth have thetter
precision and better recall (see Equation (30)). Howeveegnn

is too large, the performance of DOFIA deteriorates. Too imuc

emphasis on occupancy tends to find patterns with a very small

support just above the threshaldand the recommendation quality
will naturally drop greatly.

6. EVALUATION ON EFFICIENCY

In this section we present the empirical evaluation on tlie ef
ciency of the proposed algorithm DOFIA over the large sytithe
data sets. Specifically, we compare its running time withbtse-
line method to our problem. Here, the baseline method is t fin
all frequent itemsets first, compute the occupancy and tyuali
them, and then output topqualified ones. The implementation of
MAFIA [6] includes a fast algorithm for frequent pattern rimg,
which is adopted in this comparison. We use MAFIA to find adl th
closed frequent itemsets, compute their quality valuekérsearch
process, and use a priority queue to maintain thektapralified
itemsets. In practice, we find that the time to compute guaht-
ues and maintain the priority queue is actually negligiloiempared
to the search process, so in the experiments below, we onoly sh
the time MAFIA used to find all the closed frequent itemsetsichy
is a lower bound for the time spent by the baseline. To abuse th
notation a little bit, we still call the baseline method MAEIOur
method, DOFIA, leverages the properties in Section 3 tchéurt
prune the search space, thus may achieve better efficiency.

Table 6: The recommendation performance ¢ = 0.05 and

B=0.1)

by P(%) R(%) F1(%)
0.0 90.04 8215 79.79
0.5 89.67 92.84 88.78
1.0 90.77 94.74 91.3
2.0 91.63 9596 92.81
4.0 92.65 96.31 93.6
5.0 92.81 96.3 93.64
6.0 93.23 96.19 93.8
8.0 93.23 95.95 93.7
10.0 93.34 9584 93.71
400 91.27 91.62 89.82
Average | 91.76 93.91 91.12
10° 10°
Sh—A— A A A
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Figure 2: The effects of the number of transactions on MAFIA
and DOFIA

Finally, we will compare the tradeoff between computatliafa
ficiency and bound tightness. By default, we use the uppend®u

The data sets used in this section are generated with the 1BM Proposed in Section 4.2.1.

synthetic data generator for itemset patterns [2]. We atalthe
efficiency on the data sets with different characteristidse main
parameters to generate the data inclide the number of trans-
actions, L: the average length of transactiors, the number of
distinct items,PL: the average length of patternr8N: the num-
ber of patterns. In our experiments, the default paraméedata
generation aré&V = 50000, I = 1000, L = 20,1 = 1000, PL =
5, PN = 100. In Section 6.1, We will adjust one parameter while
fixing all the others to generate a series of data sets and gtew
efficiency changes. Only experiments dhand L are presented,
and other parameters do not have much impact on running fime o
the algorithms when their values are within a reasonablgeran

In addition, we also check the performance changes with dif-
ferent settings of problem parameters, including: the deegy
threshold,«; the occupancy threshold; the number of top qual-
ified itemsets we are searching fér, The default values for these
parameters are = 0.005, 3 = 0.5, A = 5,k = 5. Similarly,
we will adjust one parameter while fixing all the others to #ee
efficiency changes.

Table 5: The recommendation performance of the maximum
frequent itemsets based method

a | P(%) | R(%) | F1(%)
0.0 | 85.85| 96.02| 88.74
0.05| 90.28| 92.2 | 89.81
0.1 | 90.6 | 92.84| 90.56
0.2 | 90.65| 92.12| 90.05
0.3 | 895 | 91.02| 88.88
0.4 | 87.11| 87.57| 85.48
05 | 820 | 81.75| 79.06

The experiments were performed on a Windows 7 laptop with
quad core Intel i5-540M processor and 4 GB of main memory.

6.1 Evaluation on Different Databases

The number of transactions Here, we generate a database of
N = 10000 transactions and scale it up by vertical concatenation
of the database. The results are shown in Figure 2, incluitieg
running time and the number of nodes in the subset tree sahrch
by MAFIA and DOFIA. Note that in this experiments we only du-
plicate the database to increase its size. Thus, the nurhbedes
visited in the subset tree are expected to stay unchangechrilse
seen from Figure 2(a), DOFIA only searches abou?s nodes of
those searched by MAFIA. With respect to running time, DO§ 1A
running time grows linearly, fror.45 seconds fol 0000 transac-
tions t010.34 seconds fob0000 transactions. What is interesting
is that MAFIA's running time remains stable when the numbler o
transactions grows. After careful investigation, we think due to
the extreme efficiency of bit operators used extensively ByFIM.
However, since it takes MAFIA abou95 seconds to run the ex-
periment for each data set, DOFIA is still much faster.

The average length of transactions Here, we vary the av-
erage length of transactions. With the number of items grgwi
in each transaction, the length of interesting patterns gisws.
So we expect an exponentially growing number of frequemb-te
sets. Without proper pruning, MAFIA obviously cannot handl
such cases. As shown in Figure 3, although it is faster thaRIBO
whenL = 10, it becomes very slow ak grows larger, taking more
than 10° seconds wher. > 25. On the hand, with the help of
efficient pruning on occupancy and quality, DOFIA's runnihge
grows smoothly, fronl.22 seconds fo, = 10 to 5.88 seconds for
L = 30.
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6.2 Evaluation on Different Problem Settings

The frequency threshold In practice, it is often desirable to
have a low frequency threshold in order to detect more divers
patterns. However, with the lowering of frequency also ceme
the problem of too many frequent patterns and long runnime ti
As seen in Figure 4, although MAFIA is just a little slower ttha
DOFIA when frequency threshotd = 0.8%, it running time grows
quickly with the decrease om, and takes longer thatD000 sec-
onds wheno = 0.2%. On the other hand, DOFIA remains rel-
atively efficient even at very low frequency threshold, doette
pruning on occupancy and quality.

The occupancy threshold As shown in Figure 5, with the de-
crease of the occupancy threshg@ldhe running time and the num-
ber of the visited nodes increases moderately for DOFIA.&ta B
decreases fror.5 to 0.1, the number of nodes searched increases
by 40.6% and the running time increases b¥.1%. One might
expect that the increase in running time is exponential site
we are doing the tog- qualified search, the most qualified nodes
DOFIA has encountered helps a lot in reducing the searchespac
even if we set a low value in occupancy threshold. This olaserv
tion gives us a lot of flexibility in choosing a proper value fb

The occupancy weight parameter The occupancy weight pa-
rameter)\ reflects the priority we put on occupancy. Here, we em-

x 10

nodes
w
time (sec)
N
= w
@ @

.
I
o

v V
12
0.1

0.2 03 0.4 05 0.2 0.3

B B
(b) Running Time

0.4 05

(a) Number of Nodes

Figure 5: The effects of the minimum occupancy threshold on
DOFIA
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Figure 6: The effects of the occupancy weight parameter on
DOFIA

4

time (sec)

0

15}

10 10

k k

(@) Number of Nodes (b) Running Time

Figure 7: The effects of top4 on DOFIA

pirically test DOFIA's performance when we valy As can be
seen from Figure 6, with the increaseofrom 0 to 2, the number

of nodes visited by DOFIA increased B9%, and the running time
increased by 7%. The increase is mainly due to the fact that when
A is small the quality is dominated by its support, thus thehhig
frequency itemset with a small number of items will be outgary
fast. When\ becomes larger, it has to visit much more itemsets
with high occupancy. When > 1, the number of nodes visited
and running time converges because occupancy is alreagingla
the major role here, and thus the increase\dmas little effect on
the behavior of the algorithm.

Top k. In practice, we often want to mine more than just the top
few qualified patterns. With more patterns we can even doimgnk
on these patterns and find a set of diverse and high-quaitysiets.
Here, we increask to check the performance of DOFIA. As can be
seen from Figure 7, though the number nodes grows akiiljt
whenk increases fronl to 200, the running time only increases
moderately by about0%.

6.3 Tradeoff between Bound Tightness and Com-
putational Efficiency

In section 4.2.3 we proposed a technique that achievesaffade
between bound tightness and computational efficiency. ifspec
cally, instead of enumerating each possible valu¢lsfn Y| in
the range of0, EL*(fregmin)] asF’ does, we suggest to split the
large interval into smaller interva[so, v1 — 1], - , [vk—1, vk —

1], (o = 0,vx = ELY(fregmin) + 1).

Figure 8 shows the effect of this technique in one of our sstith
data sets. The-axis shows the “interval length”, i.e; —v;—; and
the y-axis shows the number of nodes searched and the running
time in the two figures respectively. As can be seen, smdiler t
interval length, tighter the bound and fewer the nodes beal:cin
the case where the interval length jonly 60% nodes are searched
compared to the case where the interval lengtt8isHowever, the
shortest running time does not occur when the bound is sghte
since the computation is too costly. In this case, the algoriis
fastest when the interval lengthis
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7. RELATED WORKS

Frequent pattern mining [1] has been well recognized to he fu
damental to many important data mining tasks. There is at grea
amount of work that studies efficient mining of frequent gats [11,

9, 6, 12], and we refer to [10] as a recent review on this fieliese
algorithms can be classified into mining frequent patteiris p],
frequent maximal patterns [6], and frequent closed pagt§i@].
To reduce the number of frequent patterns some interestssgn
measures and constraints are proposed [13, 4, 5, 8] alohgawit
gorithms to implement them efficiently. Recently, graphivad-
els[16] and compression[15] have also been proposed t@=ppr
mate the frequent itemset with a minimal number of rules &r pa
terns.

The concept obccupancyproposed in this paper can be viewed
as a new interesting measure and constraint. It can be sebe as
relative sizeof a pattern to its supporting transactions rather than
the absolute sizeof it, and might be more meaningful in many (6]
applications. After proposing the concept of occupancy,ties
formulate the problem of mining top-qualified patterns which 7]
maximize the weighted sum of support and occupancy. Empiri-
cal tests on web print recommendation shows that the tog-qual
fied patterns can significantly improve the recommendagsults
when the weight on occupancy is chosen properly.

One work very similar to the spirits of ours is [17], where \ian

et al. formulated the problem of finding the tédrequent itemsets
with their sizes no smaller than a threshold. Here we shoatd n
the difference between our work and theirs. First, [17] ubedab-
solute size of an itemset as a constraint, while we use oocypa
the relative size of an itemset to its supporting transastid\s ar-
gued before, in many cases occupancy might be a more redsonab
constraint. Besides, since occupancy is a normalized yilakso
makes the tuning easier. Second, [17] tried to find thektdpe-
quent itemset, so frequency was used as the quality meabure.
our work we define quality as the weighted sum of support ard oc
cupancy, which might be more appropriate. In another wotk [8
Gade et al. proposed to maximize the product of itemset side a
its frequency. Again, occupancy might be a better measaredb-
solute itemset size. Recent works [7, 14] have also propossi-
ods to deal with complex constraints constructed from pivies.
In those works, the primitives are required to be monotamit/
monotonic/convex, none of which is a property of occuparBiyt
in might be an interesting work to extend these frameworkwte
dle occupancy properly.

Different from many other constraints proposed, occupdacy
not anti-monotoni¢c monotoni¢ convertible andsuccinct[8], thus,
no previous methods can be leveraged.

9.
(1]

(2]

El

[10]

[11]

[12]

(23]
[14]

[15]

[16]

[17]

(18]
8. CONCLUSION

In this study, motivated by the pattern recommendationiappl
cations we introduce a new measure of pattern interestasgee
cupancyand formulate the problem of mining tdpqualified pat-
terns. To solve this problem, we explore the upper boundgsrop

ties on occupancy and propose DOFIA that injects these piepe
deeply into the search process. We propose two upper boimds,
which the first one is more efficient and the second one is theo-
retically proved to be tightest with certain input congitai We
show the effectiveness of occupancy in the real-world apfitin

of print-area recommendation for Web pages. Finally, aypdayn-
thetic data we demonstrate that DOFIA significantly outperfs
the baseline method in terms of efficiency. It is worth maritig
that the concept of occupancy can be extended to sequeatial p
tern mining [3] and graph mining [18], and thus is useful innpa
pattern mining applications.
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